Draw Bfs Tree Given Undirected Graph
Breadth-First Traversal (or Search) for a graph is similar to Breadth-First Traversal of a tree (See method 2 of this post). The only catch here is, unlike trees, graphs may contain cycles, so we may come to the same node again. To avoid processing a node more than once, we use a boolean visited array. For simplicity, it is assumed that all vertices are reachable from the starting vertex.
For example, in the following graph, we start traversal from vertex 2. When we come to vertex 0, we look for all adjacent vertices of it. 2 is also an adjacent vertex of 0. If we don't mark visited vertices, then 2 will be processed again and it will become a non-terminating process. A Breadth-First Traversal of the following graph is 2, 0, 3, 1.
Following are the implementations of simple Breadth-First Traversal from a given source.
The implementation uses an adjacency list representation of graphs. STL's list container is used to store lists of adjacent nodes and the queue of nodes needed for BFS traversal.
C++
#include<bits/stdc++.h>
using
namespace
std;
class
Graph
{
int
V;
vector<list<
int
>> adj;
public
:
Graph(
int
V);
void
addEdge(
int
v,
int
w);
void
BFS(
int
s);
};
Graph::Graph(
int
V)
{
this
->V = V;
adj.resize(V);
}
void
Graph::addEdge(
int
v,
int
w)
{
adj[v].push_back(w);
}
void
Graph::BFS(
int
s)
{
vector<
bool
> visited;
visited.resize(V,
false
);
list<
int
> queue;
visited[s] =
true
;
queue.push_back(s);
while
(!queue.empty())
{
s = queue.front();
cout << s <<
" "
;
queue.pop_front();
for
(
auto
adjecent: adj[s])
{
if
(!visited[adjecent])
{
visited[adjecent] =
true
;
queue.push_back(adjecent);
}
}
}
}
int
main()
{
Graph g(4);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);
cout <<
"Following is Breadth First Traversal "
<<
"(starting from vertex 2) \n"
;
g.BFS(2);
return
0;
}
Java
import
java.io.*;
import
java.util.*;
class
Graph
{
private
int
V;
private
LinkedList<Integer> adj[];
Graph(
int
v)
{
V = v;
adj =
new
LinkedList[v];
for
(
int
i=
0
; i<v; ++i)
adj[i] =
new
LinkedList();
}
void
addEdge(
int
v,
int
w)
{
adj[v].add(w);
}
void
BFS(
int
s)
{
boolean
visited[] =
new
boolean
[V];
LinkedList<Integer> queue =
new
LinkedList<Integer>();
visited[s]=
true
;
queue.add(s);
while
(queue.size() !=
0
)
{
s = queue.poll();
System.out.print(s+
" "
);
Iterator<Integer> i = adj[s].listIterator();
while
(i.hasNext())
{
int
n = i.next();
if
(!visited[n])
{
visited[n] =
true
;
queue.add(n);
}
}
}
}
public
static
void
main(String args[])
{
Graph g =
new
Graph(
4
);
g.addEdge(
0
,
1
);
g.addEdge(
0
,
2
);
g.addEdge(
1
,
2
);
g.addEdge(
2
,
0
);
g.addEdge(
2
,
3
);
g.addEdge(
3
,
3
);
System.out.println(
"Following is Breadth First Traversal "
+
"(starting from vertex 2)"
);
g.BFS(
2
);
}
}
Python3
from
collections
import
defaultdict
class
Graph:
def
__init__(
self
):
self
.graph
=
defaultdict(
list
)
def
addEdge(
self
,u,v):
self
.graph[u].append(v)
def
BFS(
self
, s):
visited
=
[
False
]
*
(
max
(
self
.graph)
+
1
)
queue
=
[]
queue.append(s)
visited[s]
=
True
while
queue:
s
=
queue.pop(
0
)
print
(s, end
=
" "
)
for
i
in
self
.graph[s]:
if
visited[i]
=
=
False
:
queue.append(i)
visited[i]
=
True
g
=
Graph()
g.addEdge(
0
,
1
)
g.addEdge(
0
,
2
)
g.addEdge(
1
,
2
)
g.addEdge(
2
,
0
)
g.addEdge(
2
,
3
)
g.addEdge(
3
,
3
)
print
(
"Following is Breadth First Traversal"
" (starting from vertex 2)"
)
g.BFS(
2
)
C#
using
System;
using
System.Collections.Generic;
using
System.Linq;
using
System.Text;
class
Graph{
private
int
_V;
LinkedList<
int
>[] _adj;
public
Graph(
int
V)
{
_adj =
new
LinkedList<
int
>[V];
for
(
int
i = 0; i < _adj.Length; i++)
{
_adj[i] =
new
LinkedList<
int
>();
}
_V = V;
}
public
void
AddEdge(
int
v,
int
w)
{
_adj[v].AddLast(w);
}
public
void
BFS(
int
s)
{
bool
[] visited =
new
bool
[_V];
for
(
int
i = 0; i < _V; i++)
visited[i] =
false
;
LinkedList<
int
> queue =
new
LinkedList<
int
>();
visited[s] =
true
;
queue.AddLast(s);
while
(queue.Any())
{
s = queue.First();
Console.Write(s +
" "
);
queue.RemoveFirst();
LinkedList<
int
> list = _adj[s];
foreach
(
var
val
in
list)
{
if
(!visited[val])
{
visited[val] =
true
;
queue.AddLast(val);
}
}
}
}
static
void
Main(
string
[] args)
{
Graph g =
new
Graph(4);
g.AddEdge(0, 1);
g.AddEdge(0, 2);
g.AddEdge(1, 2);
g.AddEdge(2, 0);
g.AddEdge(2, 3);
g.AddEdge(3, 3);
Console.Write(
"Following is Breadth First "
+
"Traversal(starting from "
+
"vertex 2)\n"
);
g.BFS(2);
}
}
Output
Following is Breadth First Traversal (starting from vertex 2) 2 0 3 1
Time Complexity: O(V+E), where V is the number of nodes and E is the number of edges.
Auxiliary Space: O(V)
Illustration :
Note that the above code traverses only the vertices reachable from a given source vertex. All the vertices may not be reachable from a given vertex (for example Disconnected graph).
To print all the vertices, we can modify the BFS function to do traversal starting from all nodes one by one (Like the DFS modified version).
The C++ code for BFS traversal for entire graph (valid for directed as well as undirected graphs) with possible multiple disconnected components is as follows:
C++
vector<
int
> bfsOfGraph(
int
V, vector<
int
> adj[])
{
vector<
int
> bfs_traversal;
vector<
bool
> vis(V,
false
);
for
(
int
i = 0; i < V; ++i) {
if
(!vis[i]) {
queue<
int
> q;
vis[i] =
true
;
q.push(i);
while
(!q.empty()) {
int
g_node = q.front();
q.pop();
bfs_traversal.push_back(g_node);
for
(
auto
it : adj[g_node]) {
if
(!vis[it]) {
vis[it] =
true
;
q.push(it);
}
}
}
}
}
return
bfs_traversal;
}
You may like to see below also :
- Recent Articles on BFS
- Depth First Traversal
- Applications of Breadth First Traversal
- Applications of Depth First Search
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
sullivanseessishe.blogspot.com
Source: https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/
0 Response to "Draw Bfs Tree Given Undirected Graph"
Publicar un comentario